Elliptic Cohomology and Elliptic Curves (felix Klein

نویسندگان

  • Felix Klein
  • CHARLES REZK
چکیده

Lecture notes for a series of talks given in Bonn, June 2015. Most of the topics covered touched in one way or another on the role of power operations in elliptic cohomology. In June of 2015 I gave a series of six lectures (the Felix Klein lectures) in Bonn. These are some of my lecture notes for those talks. I had hoped to polish them more carefully, but that hasn’t happend yet, and at this point probably will not. I am making them available more or less as-is. I include only the notes for the first five lectures. Note that some bits in these notes never made it into the spoken lectures. The notes for the final lecture are too disjointed to be very useful, so I have omitted them. I hope to soon have preprints on some aspects of what I spoke about in that lecture. I’d like to thank the Hausdorff Institute for their hospitality, and for the opportunity to give these talks, which were a great challenge, but also great fun. 1. What is elliptic cohomology? I’ll start with a brief ”pseudo-historical” account of elliptic cohomology. This is meant to be an imprecise overview. The idea is to introduce the basic questions and objects we’re interested in, and to highlight the main themes of these lectures, which could be summarized as “power operations” and “isogenies”. 1.1. Genera. A genus is a function which assigns to each closed manifold M of some type an element Φ(M) ∈ R of a commutative ring R, satisfying • Φ(M1 qM2) = Φ(M1) + Φ(M2). • Φ(M1 ×M2) = Φ(M1)Φ(M2). • Φ(∂N) = 0. This is the same as giving a ring homomorphism from a suitable cobordism ring, e.g., Φ: MSO∗ → R or Φ: MU∗ → R. Genera with values in R with Q ⊂ R can be described entirely in terms of characteristic classes, by a formalism due to Hirzebruch. For instance, associated to a genus Φ: MU∗ → R⊗Q is a characteristic class for complex vector bundles KΦ(V → X) ∈ H∗(X;R⊗Q), which is completly determined by its characteristic series, i.e., its value on the universal line bundle KΦ(x) = KΦ(O(1)→ BU(1)) ∈ H∗(BU(1);R⊗Q) = R⊗Q[[x]] Date: June 6, 2016. This work was partially supported by the National Science Foundation, DMS-1406121. 1See for instance, [HBJ92].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

The Elliptic curves in gauge theory, string theory, and cohomology

Elliptic curves play a natural and important role in elliptic cohomology. In earlier work with I. Kriz, these elliptic curves were interpreted physically in two ways: as corresponding to the intersection of M2 and M5 in the context of (the reduction of M-theory to) type IIA and as the elliptic fiber leading to F-theory for type IIB. In this paper we elaborate on the physical setting for various...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016